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APPENDIX

A. Ground Truth Translation Results

The Multipath Augmented Autoencoders [1] baseline as-
sumes that the object is cropped from the scene prior to input.
In contrast, the focus of ZePHyR is to perform zero-shot
pose estimation in cluttered scenes which contain multiple
objects. In such cluttered scenes, finding the correct object
crop of a novel object is non-trivial.

In BOP leaderboard1, Multipath Autoencoders [1] reports
their performance with the assistance of a dataset-wise
trained MaskRCNNs as a segmentation networks. Consider
that the main contribution of [1] is learning rotation encoding
that generalizes over objects, we resolve the scale ambiguity
and isolate the orientation error by providing this network
with the ground truth translation for each object at test
time. As shown in Table I, our method still outperforms [1],
especially on the YCB-V dataset where most objects have
rotational symmetry.

Method Multipath AutoEncoder Ours
w/o GT trans w/ GT trans w/o GT trans

YCB-V 0.289 0.355 0.516
LM-O 0.217 0.560 0.598

TABLE I: AR scores for different method with and without
ground truth translation (“GT trans”).

B. Pose Hypothesis Ablations Results

We test our scoring method on different subsets of
pose hypotheses to explore our sensitivity to the hypoth-
esis generation method. In Table. II, we report the AR
scores of the Point Pair Features baseline (“PPF”) [2],
our scoring method using pose hypotheses generated
only from PPF (“PPF+Scoring”), our scoring method us-
ing pose hypotheses generated only from SIFT feature
matching (“SIFT+Scoring”) and our scoring method us-
ing pose hypotheses generated from both PPF and SIFT
(“Both+Scoring”). The results indicates that on the YCB-V
dataset, where most objects have high-quality mesh models
and rich textures, the SIFT feature matching method provides
valuable pose hypotheses. When combining PPF and SIFT
hypotheses with our scoring method, the results improve
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over using our scoring method with PPF hypotheses alone.
LineMOD (LM-O), however, contains mostly low texture or
textureless objects. For this dataset, SIFT hypotheses are less
useful and adding them mildly reduces the accuracy of our
method but needs more processing time.

Method PPF PPF+ZePHyR SIFT+ZePHyR Both+ZePHyR
YCB-V 0.344 0.458 0.390 0.516
LM-O 0.527 0.598 0.011 0.595

TABLE II: BOP AR scores for ZePHyR based on different
hypothesis generation methods.

C. Network Details
1) PointNet++: As mentioned in Section III-D.3, we

reduce the sizes of MLP and adjust parameters of original
PointNet++ design, to enable the training of the whole
network with 1100 pose hypotheses in 11 GB GPU memory.
We uniformly downsample the object mesh models so that
the leaf size for the voxel grid is 7 millimeter and each
object has 1000 points on average, and further randomly
subsampled the input points down to 2000 when the number
of points in the downsampled object model still exceeds this
number. The detailed network architecture is described as
follows.

We use the single scale grouping (SSG) version of Point-
Net++. Following architecture protocol in [3], we denote
SA(K,r,[l1, ..., ld]) as a set abstraction (SA) level with K
local regions of ball radius r using PointNet of d fully
connected layers with width li (i = 1, ..., d). SA([l1, ...ld])
represents a global set abstraction level that converts set to
a single vector. FC(l,dp) represents a fully connected layer
with width l and dropout ratio dp. All fully connected layers
are followed by batch normalization [4] and ReLU activation
functions, except for the last score prediction layer. The
resulting PointNet++ architecture is as follows:

SA(128, 0.2, [16, 32])→ SA(16, 0.5, [32.64])→
SA([64, 128])→ FC(64, 0.4)→ FC(16, 0.4)→ FC(1)

2) PointNet: For the ablation experiment on PointNet in
Section V-C, we also use a reduced version of Classification
Network described in [5]. We remove the input transform and
feature transform layers. We use a three-layer MLP, with the
size of the hidden layer to be 16, pre-bottleneck, a bottleneck
max pooling layer of dimension 16, and a 3-layer MLP with
the hidden layer size 64 post-bottleneck. All except the last
MLP layers are followed by a batch normalization layer [4]
and a ReLU activation. The final output of the last layer
estimates a single score for each input point cloud.
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3) Convolutional Network: For the CNN mentioned in
Section V-C, we use a vanilla ResNet-18 [6] with no
pretrained-weight. The the number of input channels of the
first layer is expanded to match the number of error features,
and the last layer is changed to a 2-layer MLP with the
hidden layer size 64. The final output is a single score for
each pose hypothesis.

D. Training Details

For computational efficiency, we subsample the training
data points in the YCB-V and LM-O datasets and pre-process
them for fast training. Specifically, from the YCB-V training
split, we evenly sampled 4716 observations, containing 2346
observations of objects with even IDs and 2370 of objects
with odd IDs. From the synthetic training set of LineMOD
dataset [7], we evenly sampled 1749 observations of objects
that are not in LM-O dataset as the training set. The obser-
vations of the training objects are then split, with 90% used
for training and 10% used for validation. After training, the
model weights at the epoch with lowest error on validation
set of the “seen” objects are selected for evaluation, and the
observations of “unseen” objects are not used during training
or validation.

To train the PointNet and PointNet++ archetectures, we
use an Adam optimizer [8] with an initial learning rate
3 × 10−4. For the CNN training, the initial learning rate
is 1 × 10−5. We trained each network for 100 epochs and
the learning rate reduces to 1/10 after epoch 30 and 80.

We augment the training data by randomly jittering the
brightness, contrast, saturation and hue of the observation
images by factor of 0.2, 0.2, 0.2 and 0.05 respectively. To
prevent overfitting to the training objects, we also jointly
perturb the color of the model and the observation color,
changing the color of both the real and rendered data in the
same way. The factors for brightness, contrast, saturation and
hue in this process are all 0.5.

E. Qualitative Results

Figure 1 shows the qualitative results of both our method
and the baseline over the YCB-V and LM-O datasets. The
left column shows the full scene; the second column shows
the ground-truth pose for the target object. The third column
shows the highest-scoring pose according to our method, and
the last column shows the highest-scoring pose according to
the PPF baseline [2]. In the 3rd and 4th columns, the selected
pose hypothesis for each method is rendered into the frame.

Overall, Our method demonstrates a better performance
than the PPF baseline. As PPF only considers geometry, it
cannot determine the correct orientation on some objects that
are symmetrical in shape but have distinguishing texture, like
the “Master Chef” can and tomato can in row (5), (7) and
(8) in Figure 1. But our method considers both shape and
color information, and thus can make correct estimations in
such cases. PPF also tends to match the flat side of an object
to the flat top of a table, such shown in row (3), (6), (7) and
(9) in Figure 1; our method fixes such errors.

Figure 1 also shows some cases where our method fails.
In row (8), due to the over exposure on the surface of the
sugar box, our method mixes the back side of the box with
the front side. In row (7), our method fails to detect the “Soft
Scrub” bottle probably because only its side is facing towards
the camera, where almost no texture or color information is
present. The toy cat in row (3) and the egg box in row (2)
are two failure cases where the occlusion is so strong that
the whole object is almost invisible.

F. Failure Case Analysis

Figure 2 further elaborates the failure case of the sugar
box in the row (8) of Figure 1. As we can see, due to
the reflection, the upper surface of the sugar box in the
observation is overly lightened, which makes the saturation
and value errors of the wrongly-picked hypothesis smaller
than those of the correct one. However, our method correct
recover the geometry and still presents a reasonable result.

G. Time-Accuracy Trade-off on LM-O dataset

In Table III, we report the detailed data for the time-
accuracy trade-off curve in Figure 4 in the main paper. We
here only vary the PPF parameters and thus its inference
time. The speed of our scoring network (ZePHyR) is un-
changed. In the table, “Model SD” and “Scene SD” are
the sampling distance on the model point cloud and the
scene point cloud respectively, relative to the model diameter.
Higher numbers lead to smaller point clouds and faster
processing times. “Ref Pt Rate” is the ratio of the points
on the scene point cloud that are used as reference points
when sampling point pairs [2]. “Dense Object PC” means
the input object model to PPF is directly converted from
the mesh model without downsampling. “Sparse Object PC”
means PPF uses the downsampled object point cloud that is
used in the scoring network, as described in Section -C.1.
“Sparse” and “Dense” in “Refinement” column indicates the
spacial density of the point cloud used for ICP step in PPF.
We refer readers to [2] and [9] for more details.

Note that ZePHyR is a scoring network on the provided
pose hypotheses, and in the table, our PPF+ZePHyR demon-
strate a constant improvement over the PPF baseline by a
large margin with only little time overhead. This means our
method is able robustly pick better hypothesis from the PPF’s
output. Comparing the first and the third row in the table,
we can find that PPF+ZePHyR achieves comparable results
with PPF but is sped up by more than 3 times.
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Fig. 1: Qualitative results on LM-O (first 3 rows) and YCB-V (last 6 rows) dataset. Raw input image and ground truth
renders shown in the first and second column, respectively. The third and fourth column compare the top results using our
scoring pipeline (“Ours”) and the original PPF (“PPF”) hypothesis algorithm [2], respectively.
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Fig. 2: Failures case of our method. “Best” means the pose that has the lowest ADD error in the pose hypothesis set. “Ours”
means the highest scoring hypothesis returned by our method. In plot (d) and (e), “u” and “v” are the normalized projection
coordinates. “H diff”, “S diff”, “V diff” and “D diff” represent the signed difference of the hue, value, saturation and depth
between projected model points and the observation respectively. “norm cos” is the cosine of the angle between transformed
model normal vectors and observed normal vectors.



Model SD Scene SD Ref Pt Rate Object PC Refinement Time (PPF) BOP score (PPF) Time
(PPF+ZePHyR)

BOP score
(PPF+ZePHyR)

0.03 0.03 1 Dense Dense 2.900 0.527 2.948 0.598
0.03 0.05 1 Dense Sparse 1.626 0.502 1.674 0.571
0.05 0.05 1 Dense Sparse 1.388 0.480 1.436 0.550
0.05 0.05 0.5 Dense Sparse 0.794 0.463 0.842 0.524
0.05 0.07 0.5 Dense Sparse 0.530 0.349 0.578 0.456
0.03 0.04 0.5 Sparse Sparse 0.524 0.319 0.572 0.504
0.05 0.07 0.25 Dense Sparse 0.315 0.303 0.363 0.408
0.03 0.04 0.2 Sparse Sparse 0.257 0.297 0.305 0.484
0.03 0.05 0.2 Sparse Sparse 0.219 0.253 0.267 0.441
0.05 0.05 0.2 Sparse Sparse 0.200 0.213 0.248 0.379

TABLE III: Inference time and performance on the LM-O dataset of PPF and PPF+ZePHyR using different PPF settings.
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